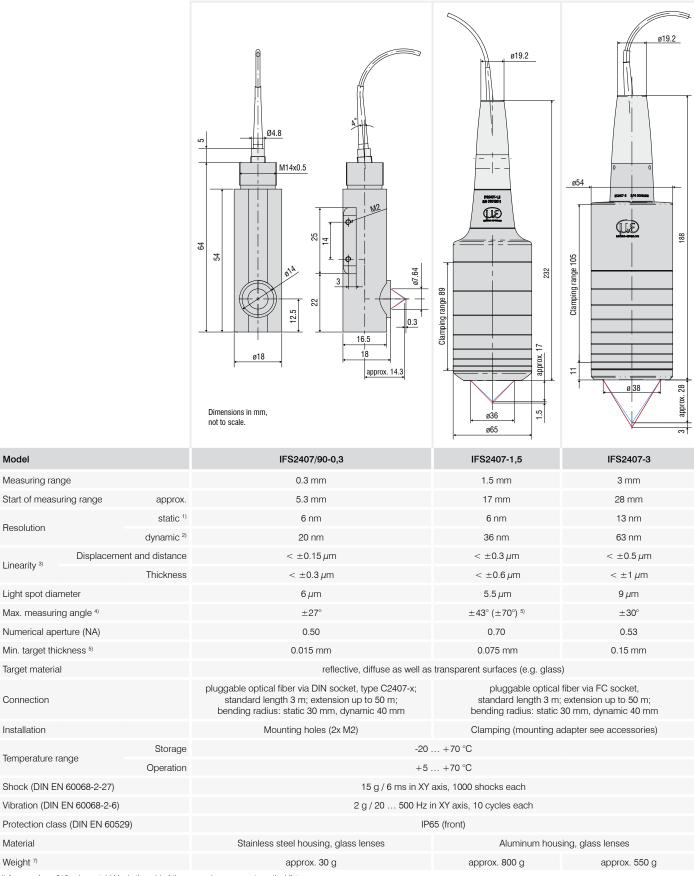


# More Precision

## confocalDT // Confocal chromatic sensor system




### High precision sensors for displacement and thickness measurements confocalDT IFS2407

| Image: Submicron resolution         Image: Submicron resolution <th></th> <th>e4.2<br/>e12</th> <th>ppiox.1</th> <th>Image: selection of the se</th> |                                                                                | e4.2<br>e12                                                                                                                                                                                                                                                                                                               | ppiox.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: selection of the se |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                | IFS2407-0.1                                                                                                                                                                                                                                                                                                               | IFS2407-0.1(001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IFS2407-0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Model<br>Measuring range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                | <b>IFS2407-0.1</b><br>0.1 mm                                                                                                                                                                                                                                                                                              | IFS2407-0.1(001)<br>0.1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IFS2407-0.8<br>0.8 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | approx.                                                                        |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measuring range<br>Start of measuring range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | approx.<br>static <sup>1)</sup>                                                | 0.1 mm                                                                                                                                                                                                                                                                                                                    | 0.1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Measuring range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                | 0.1 mm<br>1 mm                                                                                                                                                                                                                                                                                                            | 0.1 mm<br>1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8 mm<br>5.9 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Measuring range<br>Start of measuring range<br>Resolution<br>Displacemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | static 1)                                                                      | 0.1 mm<br>1 mm<br>3 nm                                                                                                                                                                                                                                                                                                    | 0.1 mm<br>1 mm<br>3 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8 mm<br>5.9 mm<br>24 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measuring range<br>Start of measuring range<br>Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | static <sup>1)</sup><br>dynamic <sup>2)</sup>                                  | 0.1 mm<br>1 mm<br>3 nm<br>6 nm                                                                                                                                                                                                                                                                                            | 0.1 mm<br>1 mm<br>3 nm<br>6 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Measuring range<br>Start of measuring range<br>Resolution<br>Displacemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 μm                                                                                                                                                                                                                                                                              | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>3)</sup><br>Light spot diameter<br>Max. measuring angle <sup>4)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 μm<br>< ±0.1 μm                                                                                                                                                                                                                                                                 | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 μm<br>< ±0.1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm<br>< ±0.4 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Measuring range Start of measuring range Resolution Linearity <sup>3)</sup> Light spot diameter Max. measuring angle <sup>4)</sup> Numerical aperture (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 µm<br>< ±0.1 µm<br>3 µm                                                                                                                                                                                                                                                         | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 μm<br>< ±0.1 μm<br>4 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm<br>< ±0.4 μm<br>6 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>a</sup> )<br>Light spot diameter<br>Max. measuring angle <sup>4</sup> )<br>Numerical aperture (NA)<br>Min. target thickness <sup>5</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05  \mu \text{m} \\ < \pm 0.1  \mu \text{m} \\ 3  \mu \text{m} \\ \pm 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$                                                                                                     | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>$< \pm 0.2 \mu$ m<br>$< \pm 0.4 \mu$ m<br>$6 \mu$ m<br>$\pm 30^{\circ}$<br>0.50<br>0.04 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Measuring range Start of measuring range Resolution Linearity <sup>3)</sup> Light spot diameter Max. measuring angle <sup>4)</sup> Numerical aperture (NA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | 0.1 mm         1 mm         3 nm         6 nm $< \pm 0.05  \mu m$ $< \pm 0.1  \mu m$ 3 $\mu m$ $\pm 48^{\circ}$ 0.80         0.005 mm         reflective, diffu         pluggable op                                                                                                                                      | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>$< \pm 0.2 \mu$ m<br>$< \pm 0.4 \mu$ m<br>$6 \mu$ m<br>$\pm 30^{\circ}$<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>3</sup> )<br>Light spot diameter<br>Max. measuring angle <sup>4</sup> )<br>Numerical aperture (NA)<br>Min. target thickness <sup>5</sup> )<br>Target material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu m$<br>$< \pm 0.1 \mu m$<br>$4 \mu m$<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>$< \pm 0.2 \mu m$<br>$< \pm 0.4 \mu m$<br>$6 \mu m$<br>$\pm 30^{\circ}$<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>3</sup> )<br>Light spot diameter<br>Max. measuring angle <sup>4</sup> )<br>Numerical aperture (NA)<br>Min. target thickness <sup>5</sup> )<br>Target material<br>Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance               | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>$< \pm 0.2 \mu m$<br>$< \pm 0.4 \mu m$<br>$6 \mu m$<br>$\pm 30^{\circ}$<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>3)</sup><br>Light spot diameter<br>Max. measuring angle <sup>4)</sup><br>Numerical aperture (NA)<br>Min. target thickness <sup>5)</sup><br>Target material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>nt and distance<br>Thickness  | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$\pm 40.05 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40<br>ng (mounting adapter see accessor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>$< \pm 0.2 \mu m$<br>$< \pm 0.4 \mu m$<br>$6 \mu m$<br>$\pm 30^{\circ}$<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>3</sup> )<br>Light spot diameter<br>Max. measuring angle <sup>4</sup> )<br>Numerical aperture (NA)<br>Min. target thickness <sup>5</sup> )<br>Target material<br>Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>Int and distance<br>Thickness | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05  \mu \text{m} \\ < \pm 0.1  \mu \text{m} \\ 3  \mu \text{m} \\ \pm 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$ $\begin{array}{c} \text{reflective, diffully pluggable op bending } \\ \text{clamping} \end{array}$ | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40<br>ng (mounting adapter see accessor<br>$-20 \dots +70 ^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 µm<br>< ±0.4 µm<br>6 µm<br>±30°<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm<br>ies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>3</sup> )<br>Displacement<br>Max. measuring angle <sup>4</sup> )<br>Numerical aperture (NA)<br>Min. target thickness <sup>5</sup> )<br>Target material<br>Connection<br>Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>Int and distance<br>Thickness | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05  \mu \text{m} \\ < \pm 0.1  \mu \text{m} \\ 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$ reflective, diffur pluggable op bending Clampi                                                                             | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40<br>ng (mounting adapter see accessor<br>$-20 \dots +70 ^{\circ}$ C<br>$+5 \dots +70 ^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm<br>< ±0.4 μm<br>6 μm<br>±30°<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm<br>ies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measuring range<br>Start of measuring range<br>Resolution<br>Linearity <sup>a</sup> )<br>Displacement<br>Max. measuring angle <sup>4</sup><br>Mumerical aperture (NA)<br>Min. target thickness <sup>5</sup><br>Target material<br>Connection<br>Installation<br>Installation<br>Shock (DIN EN 60068-2-27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>Int and distance<br>Thickness | $\begin{array}{c} 0.1 \text{ mm} \\ 1 \text{ mm} \\ 3 \text{ nm} \\ 6 \text{ nm} \\ < \pm 0.05  \mu \text{m} \\ < \pm 0.1  \mu \text{m} \\ 48^{\circ} \\ 0.80 \\ 0.005 \text{ mm} \end{array}$ reflective, diffur pluggable op bending Clampi                                                                             | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$= \pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40<br>ng (mounting adapter see accessor<br>$-20 \dots +70 ^{\circ}$ C<br>$+5 \dots +70 ^{\circ}$ C<br>$+5 \dots +70 ^{\circ}$ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm<br>< ±0.4 μm<br>6 μm<br>±30°<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm<br>ies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measuring range Start of measuring range Start of measuring range Resolution Linearity <sup>3)</sup> Light spot diameter Max. measuring angle <sup>4)</sup> Numerical aperture (NA) Min. target thickness <sup>5)</sup> Target material Connection Installation Femperature range Shock (DIN EN 60068-2-27) Vibration (DIN EN 60068-2-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>Int and distance<br>Thickness | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 μm<br>< ±0.1 μm<br>3 μm<br>±48°<br>0.80<br>0.005 mm<br>reflective, diffu<br>pluggable op<br>bending<br>Clampi<br>15 g<br>2 g / 2                                                                                                                                                | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40<br>ng (mounting adapter see accessor<br>$-20 \dots +70 ^{\circ}$ C<br>$+5 \dots +70 ^{\circ}$ C<br>$/ 6 ms in XY axis, 1000 shocks eacl 10 \dots 500 Hz in XY axis, 10 cycles eacl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm<br>< ±0.4 μm<br>6 μm<br>±30°<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm<br>ies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Measuring range Start of measuring range Start of measuring range Resolution Interact of measuring range Displacement Disp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | static <sup>1)</sup><br>dynamic <sup>2)</sup><br>Int and distance<br>Thickness | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>< ±0.05 μm<br>< ±0.1 μm<br>3 μm<br>±48°<br>0.80<br>0.005 mm<br>reflective, diffu<br>pluggable op<br>bending<br>Clampi<br>15 g<br>2 g / 2                                                                                                                                                | 0.1 mm<br>1 mm<br>3 nm<br>6 nm<br>$< \pm 0.05 \mu$ m<br>$< \pm 0.1 \mu$ m<br>$4 \mu$ m<br>$\pm 48^{\circ}$<br>0.70<br>0.005 mm<br>use as well as transparent surfaces (<br>tical fiber via FC socket, standard le<br>extension up to 50 m;<br>g radius: static 30 mm; dynamic 40<br>ng (mounting adapter see accessor<br>$-20 \dots +70 ^{\circ}$ C<br>$+5 \dots +70 ^{\circ}$ C<br>$+5 \dots +70 ^{\circ}$ C<br>1/6 ms in XY axis, 100 shocks each<br>100 - | 0.8 mm<br>5.9 mm<br>24 nm<br>75 nm<br>< ±0.2 μm<br>< ±0.4 μm<br>6 μm<br>±30°<br>0.50<br>0.04 mm<br>e.g. glass)<br>ngth 3 m;<br>mm<br>ies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

<sup>a</sup> Average from 512 values at AR2, if the find of the find soft of measuring range on o opecan data at R2. If the find of the find soft of measuring range (1 kHz)
 <sup>a</sup> RMS noise relates to mid of measuring range (1 kHz)
 <sup>a</sup> All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.
 <sup>a</sup> Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.
 <sup>a</sup> Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

6) Sensor weight without optical fiber



<sup>1)</sup> Average from 512 values at 1 kHz, in the mid of the measuring range onto optical flat

<sup>2)</sup> RMS noise relates to mid of measuring range (1 kHz) <sup>3)</sup> All data at constant ambient temperature (25 ±1 °C) against optical flat; specifications can change when measuring different objects.

4) Maximum measuring angle of the sensor that produces a usable signal on reflecting surfaces. The accuracy decreases when approaching the limit values.

<sup>5)</sup> Maximum measuring angle of the sensor up to which a usable signal can be obtained on diffusely reflecting metallic surfaces, whereby the accuracy decreases towards the limit values

<sup>6</sup> Glass sheet with refractive index n = 1.5 throughout the entire measuring range. In the mid of the measuring range, also thinner layers can be measured.

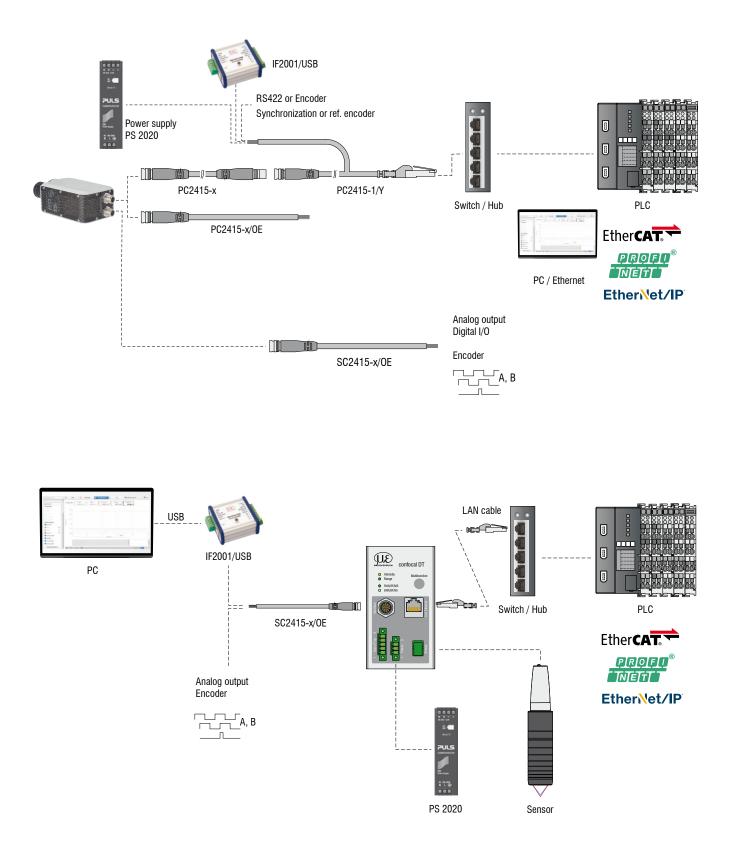
7) Sensor weight without optical fiber

Model

Resolution

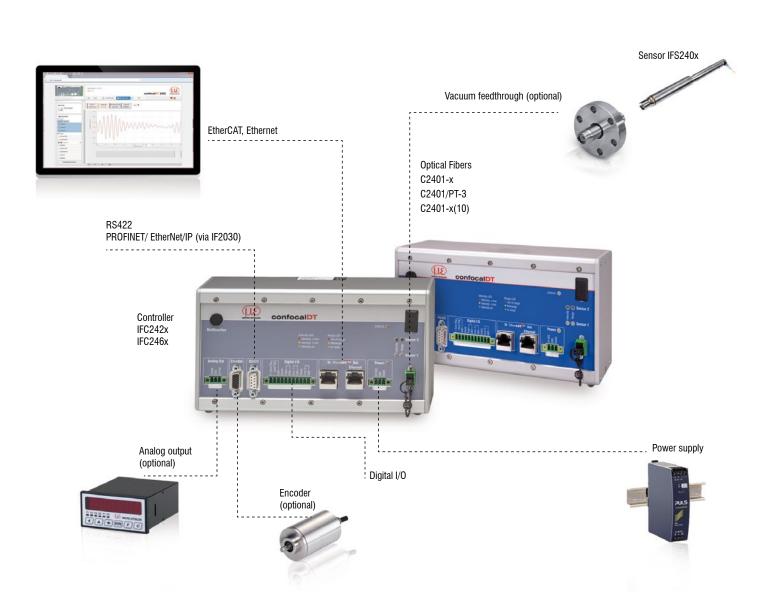
Linearity 3)

Connection


Installation

Material

Weight 7)


#### Cable concepts for every application

The connection options are diverse and can be adapted to your plant or machine concept.



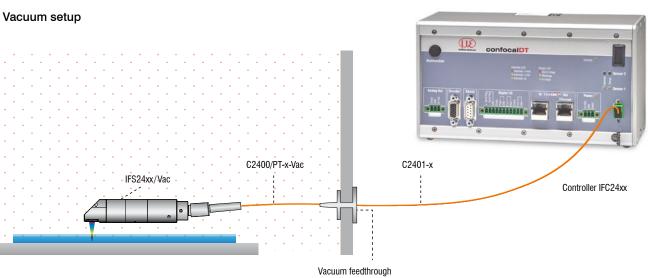
#### The confocalDT system consists of:

- Sensor IFS240x
- Controller IFC24xx
- Fiber optic cable C24xx



## Customer-specific modifications confocalDT

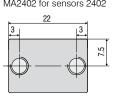
#### Customer-specific modifications

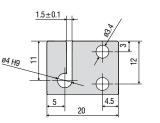

Application examples are often found where the standard versions of the sensors and the controllers are performing at their limits. To facilitate such special tasks, it is possible to customize the sensor design and to adjust the controller accordingly. Common requests for modifications include changes in design, mounting options, customized cable lengths and modified measuring ranges.

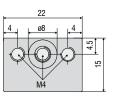




#### Possible modifications

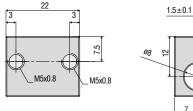

- Sensors with connector
- Cable length
- Vacuum suitability up to UHV
- Specific lengths
- Customer-specific mounting options
- Optical filter for ambient light compensation
- Housing material
- Measuring range / Offset distance

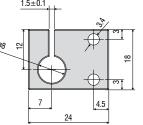


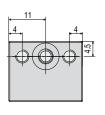


C2405.../Vac (KF or CF flange) C2402.../Vac (KF flange)

## Accessories Mounting adapter

## Accessories: mounting adapter MA2402 for sensors 2402

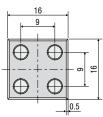


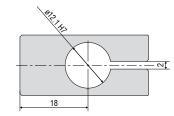



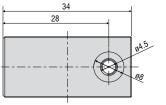




#### Accessories: mounting adapter

MA2403 for sensors 2403

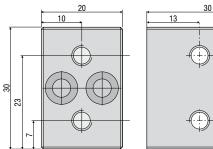


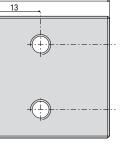



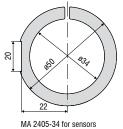




#### Accessories: mounting adapter

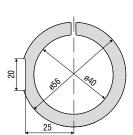
MA2404-12 for sensors IFS2404-2 / IFS2404/90-2 / IFS2407-0,1



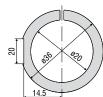




Accessories: mounting adapter MA2400 for sensors IFS2405 / IFS2406 / IFS2407 (consisting of a mounting block and a mounting ring)

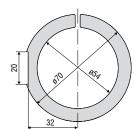

#### Mounting block



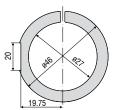





MA 2405-34 for sensors IFS2405-3 IFD2415-3



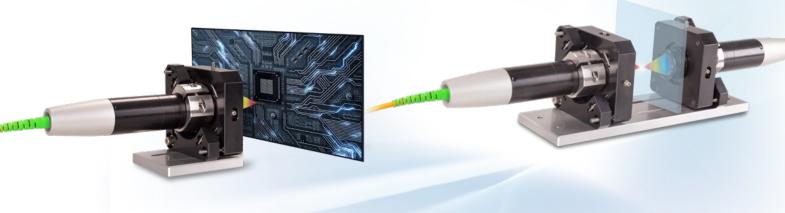

MA 2405-40 for sensors IFS 2405-6




Mounting ring

MA 2406-20 for sensors IFS2406-2,5 IFS2406/90-2,5



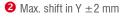

MA 2405-54 for sensors IFS2405-10 IFS2407-3 IFD2415-10

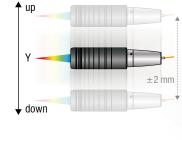


MA 2400-27 for sensors IFS2405-0,3 / -1 IFS2406-3 / -10 IFD2411-x IFD2410-x IFD2415-1 20 . 665 36.5

MA 2405-62 for sensors IFS2405-28 / -30

## Accessories Adjustable mounting adapters



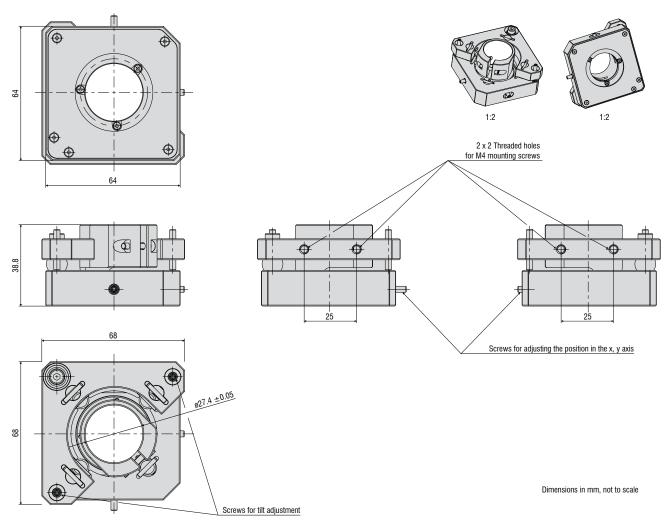


JMA-xx mounting adapter for distance measurements

JMA-Thickness mounting adapter for two-sided thickness measurements

The adjustable JMA mounting adapter simplifies the alignment and fine adjustment of confocal sensors. The sensors are integrated and aligned directly in the machine together with the adapter. This corrects, e.g, minor deviations caused by mounting and compensates for tilted measuring objects. With two-sided thickness measurements, the JMA-Thickness mounting adapter supports the fine alignment of the two measuring points.



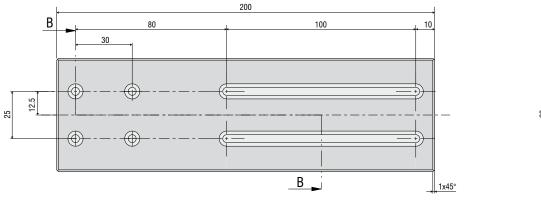


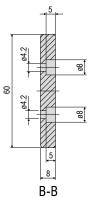







#### Dimensions


Adjustable mounting adapter JMA




#### Holder for smaller sensor diameters

Sensor holder for JMA-08 Sensor holder for JMA-10 Sensor holder for JMA-12 Sensor holder for JMA-20 A-A 19.8-0.5 A-A А 19.8-0.5 19.8-0.5 А А 19.8-8.5 A-A 1 \_1 1 1 ø20.05<sup>+0.06</sup> ø27.0.3 10.05 12.05 **38.05** <sup>⊥</sup> a27. 027 M4 A-A M4 M4 A А А for M4x6 grub screw, 0441074 for M4x6 grub screw, for M4x6 grub screw, 0441041 0441041

#### Mounting plate JMP for JMA-Thickness





## Accessories Mounting adapter for individual sensors

Manual adjustment mechanism for easy and fast adjustment

Optimal sensor alignment for best possible measurement results

Ideally suitable for machine integration

Particularly for high resolution sensors with a small tilt angle, perpendicular installation is required. The JMA-xx mounting adapter enables fine alignment of the sensor to the target via the simple adjustment mechanism. This makes it easy to compensate for minor mounting deviations or tilted measuring objects.

#### = 1 JMA-xx

I sensor holder for smaller diameters (not with JMA-27)

dilitin

- I hexagon screwdriver for positioning
- Assembly instructions

#### Scope of supply

| Model                        |   | JMA-08                                                            | JMA-12                                                 | JMA-20                                                        | JMA-27                                                                          |
|------------------------------|---|-------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|
| X                            |   | ±4° (continuously adjustable)                                     |                                                        |                                                               |                                                                                 |
| Tilting range                | Y |                                                                   | ±4° (continuou                                         | usly adjustable)                                              |                                                                                 |
| Chitting range               | Х |                                                                   | ±2 mm (continue                                        | ously adjustable)                                             |                                                                                 |
| Shifting range               | Υ |                                                                   | ±2 mm (continue                                        | ously adjustable)                                             |                                                                                 |
| Shock (DIN EN 60068-2-27)    |   |                                                                   | 15 g / 6 ms in XYZ ax                                  | is, 1000 shocks each                                          |                                                                                 |
| Vibration (DIN EN 60068-2-6) |   | 2 g / 20 500 Hz in XYZ axis, 10 cycles each                       |                                                        |                                                               |                                                                                 |
| Adjustment mechanism         |   | Screw setting mechanism via M3x0.25 screw with hexagon socket 1.5 |                                                        |                                                               |                                                                                 |
| Installation                 |   | 2x 2 mounting holes for M4x1                                      |                                                        |                                                               |                                                                                 |
| Sensor mounting              |   | Radial clamping<br>for ø 8 mm                                     | Radial clamping<br>for ø 12 mm                         | Radial clamping<br>for ø 20 mm                                | Radial clamping<br>for ø 27 mm                                                  |
| Compatibility                |   | confocalDT:<br>IFS2403 series                                     | confocalDT:<br>IFS2404-2<br>IFS2407-0,1<br>IFS2407-0,8 | confocalDT:<br>IFS2406-2,5/VAC<br>interferoMETER:<br>IMP-TH70 | confocalDT:<br>IFS2405-0,3<br>IFS2405-1<br>IFS2406-3<br>IFS2406-10<br>IFD2411-x |

#### Application examples:

#### Alignment

Subsequent correction of the mounting position



Compensates for incorrect target position



#### Positioning

Shifting the sensor to target area



## Accessories Mounting adapter for two-sided thickness measurements

dululul

Optimal alignment of the optical axes enables high precision in two-sided thickness measurements

Pre-assembled for easy installation and fast commissioning

Ideally suitable for machine integration

For two-sided thickness measurements, the JMA-Thickness mounting adapter supports the alignment of the measuring points to one another. This means that the measuring points are arranged absolutely congruent to each other so that the sensors are positioned exactly on an optical axis. This prevents measurements at an offset and a reliable measurement result is achieved with the highest possible precision.

When delivered, the two mounting adapters are pre-mounted on a mounting plate and aligned with one another. This simplifies installation and the measuring system can be put into operation more quickly. After installation into the machine, the plate can be removed, if necessary.

#### Scope of supply

- = 2 JMA-xx
- I JMP mounting plate
- 1 hexagon screwdriver 1.5 mm
- 1 Allen wrench 2.5 mm
- 1 Allen wrench 3.0 mm
- 1 Assembly instructions
- 2 optional reducing sleeves

(depending on the package and the corresponding sensor)

| Model        | JMA-Thickness    | -08                           | -12                                     | -20                                                           | -27                                                                             |
|--------------|------------------|-------------------------------|-----------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|
| Shock (DIN   | EN 60068-2-27)   |                               | 15 g / 6 ms in XYZ axi                  | is, 1000 shocks each                                          |                                                                                 |
| Vibration (D | IN EN 60068-2-6) |                               | 2 g / 20 500 Hz in XY                   | /Z axis, 10 cycles each                                       |                                                                                 |
| Adjustment   | mechanism        | S                             | crew setting mechanism via M3x0         | .25 screw with hexagon socket 1.5                             | 5                                                                               |
| Sensor mou   | unting           | Radial clamping<br>for ø 8 mm | Radial clamping<br>for ø 12 mm          | Radial clamping<br>for ø 20 mm                                | Radial clamping<br>for ø 27 mm                                                  |
| Compatibilit | ty               | confocalDT:<br>IFS2403 series | confocalDT:<br>IFS2404-2<br>IFS2407-0,1 | confocalDT:<br>IFS2406-2,5/VAC<br>interferoMETER:<br>IMP-TH70 | confocalDT:<br>IFS2405-0,3<br>IFS2405-1<br>IFS2406-3<br>IFS2406-10<br>IFD2411-x |


#### More precision with two-sided thickness measurements



With JMA-Thickness: Measures exactly at the opposite position



Without JMA-Thickness: Incorrect thickness measurement with vibrations



With JMA-Thickness: Sensors are on one optical axis – provides stability even with vibrating objects



#### Without JMA-Thickness: Sensors positioned incorrectly – no thickness measurement possible



With JMA-Thickness: Optimal positioning support – object visible for both sensors

## Accessories Cables and connectors

#### Software

IFD24xx-Tool Software demo tool included

#### Light source accessories

| IFL2422/LED | Lamp module for IFC2422 and IFC2466 |
|-------------|-------------------------------------|
| IFL24x1/LED | Lamp module for IFC2421 and IFC2465 |

#### Optical fiber extension for sensors

CE2402 cable with 2x E2000/APC connectorsCE2402-xExtension for optical fiber (3 m, 10 m, 13 m, 30 m, 50 m)CE2402/PT3-xOptical fiber extension with protection tube for mechanical stress

| CE2402/P13-X | Oplical liber extension with protection tube for mechanical stres |
|--------------|-------------------------------------------------------------------|
|              | (3 m, 10 m, customer-specific length up to 50 m)                  |
|              |                                                                   |

#### Optical fibers for IFS2404/IFS2404-2 and IFS2404/90-2 sensors

| C2404-x | Optical fiber with FC/APC and E2000/APC connectors |
|---------|----------------------------------------------------|
|         | Fiber core diameter 20 $\mu$ m (2 m)               |

#### Optical fibers for IFS2405/IFS2406/2407-0,1/ IFS2407-3/IFD2411-x sensors

C2401 cable with FC/APC and E2000/APC connectors

| C2401-x     | Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m) |
|-------------|---------------------------------------------------------------------|
| C2401/PT3-x | Optical fiber with protection tube for mechanical stress            |
|             | (3 m, 5 m, 10 m, customer-specific length up to 50 m)               |
| C2401-x(01) | Optical fiber core diameter 26 $\mu$ m (3 m, 5 m, 15 m)             |
| C2401-x(10) | Drag-chain suitable optical fiber (3 m, 5 m, 10 m)                  |

#### C2400 cable with 2x FC/APC connectors

| C2400-x        | Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m) |
|----------------|---------------------------------------------------------------------|
| C2400/PT-x     | Optical fiber with protection tube for mechanical stress            |
|                | (3 m, 5 m, 10 m, customer-specific length up to 50 m)               |
| C2400/PT-x-Vac | Optical fiber with protection tube suitable for use in vacuum       |
|                | (3 m, 5 m, 10 m, customer-specific length up to 50 m)               |

#### Cables for IFD2410 /2415 sensors

| PC2415-x    | Supply/interface cable, drag-chain suitable,           |
|-------------|--------------------------------------------------------|
|             | 3 m, 6 m, 9 m, 15 m                                    |
| PC2415-x/OE | Supply/interface cable open ends, drag-chain suitable, |
|             | 3 m, 6 m, 9 m, 15 m                                    |
| PC2415-1/Y  | Supply/interface cable Y, open ends and RJ45 plug,     |
|             | drag-chain suitable, 1 m                               |
| SC2415-x/OE | Multifunction cable, open ends, drag-chain suitable,   |
|             | 3 m, 6 m, 9 m, 15 m                                    |
|             |                                                        |

#### Cables for IFD2411 sensors

| SC2415-x/OE | Multifunction cable, open ends, drag-chain suitable, 3 m, 6 m, 9 m, 15 m |
|-------------|--------------------------------------------------------------------------|
| C2401-x     | Optical fiber (3 m, 5 m, 10 m, customer-specific length up to 50 m)      |



Optical fiber C2401-x



Optical fiber with coating C2401/PT3-x

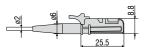


Drag-chain suitable optical fiber C2401-x(10)

#### Optical fibers for IFS2407/90-0,3 sensors

C2407-x Optical fiber with DIN connector and E2000/APC (2 m, 5 m)

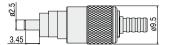
#### Vacuum feedthrough


| C2402/Vac/KF16   | Vacuum feedthrough with optical fiber, 1 channel, vacuum side FC/APC |
|------------------|----------------------------------------------------------------------|
|                  | non-vacuum side E2000/APC, clamping flange KF 16                     |
| C2405/Vac/1/KF16 | Vacuum feedthrough on both sides FC/APC socket, 1 channel,           |
|                  | clamping flange type KF 16                                           |
| C2405/Vac/1/CF16 | Vacuum feedthrough on both sides FC/APC socket, 1 channel,           |
|                  | flange type CF 16                                                    |
| C2405/Vac/6/CF63 | Vacuum feedthrough FC/APC socket, 6 channels,                        |
|                  | flange type CF 63                                                    |

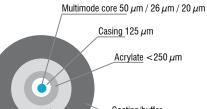
#### Other accessories

| SC2471-x/USB/IND | Connector cable IFC2461/71, 3 m, 10 m, 20 m        |
|------------------|----------------------------------------------------|
| SC2471-x/IF2008  | Connector cable IFC2461/71-IF2008, 3 m, 10 m, 20 m |
| PS2020           | Power supply 24V / 2.5A                            |
| EC2471-3/OE      | Encoder cable, 3m                                  |
| IF2030/PNET      | Interface module for PROFINET connection           |
| IF2030/ENETIP    | Interface module for EtherNet/IP connection        |

#### Optical fiber


Temperature range : -50 °C to 90 °C Bending radius: 30/40 mm




E2000/APC standard connector



#### FC/APC standard connector







Coating/buffer PVC: polyvinyl chloride

Strain relief PVDF: polyvinylidene fluoride

## Accessories Interface modules

| Module                                                                                     | IFC2410   | IFC2411 | IFC2415   | IFC242x | IFC246x  |
|--------------------------------------------------------------------------------------------|-----------|---------|-----------|---------|----------|
| IF2001/USB<br>Single-channel RS422/USB converter cable                                     | ~         | ~       | ~         | ~       | ~        |
| IF2004/USB<br>RS422/USB converter to convert<br>up to 4 digital signals to USB             | $\otimes$ | 0       | 0         | ~       | ~        |
| IF2008/ETH<br>Interface module for Ethernet<br>connection for up to 8 sensors              | 0         | 0       | 0         | ~       | ~        |
| IF2008PCIE<br>Interface card for multiple sensor signals;<br>analog and digital interfaces | $\otimes$ | 0       | 0         | ~       | <b>~</b> |
| IF2035/PNET<br>Interface module for Industrial<br>Ethernet connection (PROFINET)           | $\otimes$ | 0       | $\otimes$ | ~       | ~        |
| IF2035/ENETIP<br>Interface module for Industrial<br>Ethernet connection (EtherNet/IP)      | $\otimes$ | 0       | 0         | ~       | ~        |

#### IF2001/USB converter RS422 to USB

The RS422/USB converter converts the digital signals of a confocal controller into a USB data packet. The sensor and the converter are connected via the RS422 interface of the converter. Data output is done via USB interface. The converter loops through further signals and functions such as laser on/off, switch signals and function output. The connected controllers and the converter can be programmed through software.

#### Special features

- Robust aluminum housing
- Easy sensor connection via screw terminals (plug and play)
- Conversion from RS422 to USB
- Supports baud rates from 9.6 kBaud to 12 MBaud





#### IF2004/USB: 4-channel converter from RS422 to USB

The RS422/USB converter is used for transforming digital signals of up to four confocal controllers into USB data signals. The converter has four trigger inputs and a trigger output for connecting additional converters. Data is output via an USB interface. The connected controllers and the converter can be programmed through software. The COM interfaces can be used individually and can be switched.

#### Special features

- 4x digital signals via RS422
- 4x trigger inputs, 1x trigger output
- Synchronous data acquisition
- Data output via USB



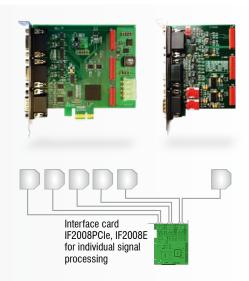


#### IF2008/ETH IF2008/ETH Interface module for Ethernet connection with up to 8 sensors

The IF2008/ETH integrates up to eight sensors and/or encoders with an RS422 interface into an Ethernet network. Four programmable switching in-/outputs (TTL and HTL logic) are available.

10 indicator LEDs directly on the module show both the channel and the device status. In addition, acquisition and output of data via Ethernet is in addition performed at high speeds up to 200 kHz. Parameter setting of the interface module can be easily done via the web interface.




#### IF2008PCIe/IF2008E

#### Interface card for synchronous data acquisition

Absolute synchronous data acquisition is a decisive factor for the deflection or straightness measurement using several controllers. The IF2008PCIe interface card is designed for installation in PCs and enables the synchronous acquisition of four digital sensor signals and two encoders. The data is stored in a FIFO memory in order to enable resource-saving processing in blocks in the PC. The IF2008E expansion board enables to detect in addition two digital controller signals, two analog controller signals and eight I/O signals.

#### Special features

- IF2008PCIe Basic printed circuit board: 4 digital signals and 2 encoders
- IF2008E Expansion board: 2x digital signals, 2x analog signals and 8x I/O signals



#### IF2035

#### Interface module for Industrial Ethernet connection

The IF2035 interface modules are designed for easy connection of Micro-Epsilon sensors to Ethernet-based fieldbuses. The IF2035 is compatible with sensors that output data via an RS422 or RS485 interface and supports the common Industrial Ethernet protocols EtherCAT, PROFINET and EtherNet/IP.

These modules operate on the sensor side with up to 4 MBd and have two network connections for different network topologies. In addition, the IF2035-EtherCAT offers a 4-fold oversampling function, which enables faster measurements than the bus cycle allows, if required. Installation in control cabinets is via a DIN rail.



### Sensors and Systems from Micro-Epsilon



Sensors and systems for displacement, distance and position



Optical micrometers and fiber optics, measuring and test amplifiers



Sensors and measurement devices for non-contact temperature measurement



Color recognition sensors, LED analyzers and inline color spectrometers



Measuring and inspection systems for metal strips, plastics and rubber



3D measurement technology for dimensional testing and surface inspection



MICRO-EPSILON Headquarters Koenigbacher Str. 15 · 94496 Ortenburg / Germany Tel. +49 (0) 8542 / 168-0 · Fax +49 (0) 8542 / 168-90 info@micro-epsilon.com · www.micro-epsilon.com